Topic Extractor¶
Extracts terms from text using Textacy and SpaCy libraries.
This class provides functionalities to extract terms from a given list of documents, considering various linguistic features like n-grams, named entities, and noun chunks.
Source code in bunkatopics/topic_modeling/term_extractor.py
38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 |
|
__init__(ngrams=[1, 2, 3], ngs=True, ents=False, ncs=False, drop_emoji=True, include_pos=['NOUN'], include_types=['PERSON', 'ORG'], language='en')
¶
Initializes the TextacyTermsExtractor with specified configuration.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
ngrams |
tuple[int, ...]
|
Tuple of n-gram lengths to consider. Defaults to (1, 2, 3). |
[1, 2, 3]
|
ngs |
bool
|
Include n-grams in extraction. Defaults to True. |
True
|
ents |
bool
|
Include named entities in extraction. Defaults to True. |
False
|
ncs |
bool
|
Include noun chunks in extraction. Defaults to True. |
False
|
drop_emoji |
bool
|
Remove emojis before extraction. Defaults to True. |
True
|
include_pos |
list[str]
|
POS tags to include. Defaults to ["NOUN"]. |
['NOUN']
|
include_types |
list[str]
|
Entity types to include. Defaults to ["PERSON", "ORG"]. |
['PERSON', 'ORG']
|
Raises:
Type | Description |
---|---|
ValueError
|
If the specified language is not supported. |
Source code in bunkatopics/topic_modeling/term_extractor.py
47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 |
|
fit_transform(ids, sentences)
¶
Extracts terms from the provided documents and returns them along with their indices.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
ids |
List[DOC_ID]
|
List of document IDs. |
required |
sentences |
List[str]
|
List of sentences corresponding to the document IDs. |
required |
Notes
- The method processes each document to extract relevant terms based on the configured linguistic features such as n-grams, named entities, and noun chunks.
- It also handles pre-processing steps like normalizing text, removing brackets, replacing currency symbols, removing HTML tags, and optionally dropping emojis.
Source code in bunkatopics/topic_modeling/term_extractor.py
83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 |
|